
Segment distribution in self-similar patterns and backbone structure of percolation clusters

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1984 J. Phys. A: Math. Gen. 17 L495

(http://iopscience.iop.org/0305-4470/17/9/008)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 08:38

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/17/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 17 (1984) L495-LA99. Printed in Great Britain 

LETTER TO THE EDITOR 

Segment distribution in self-similar patterns and backbone 
structure of percolation clusters 

T Ohtsuki and T Keyes 
Department of Chemistry, Boston University, Boston, MA 02215, USA 

Received 5 April 1984 

Abstract. A distribution function of segments in self-similar patterns is investigated and 
determined from the fractal dimensionality D of the pattern and that D' of the segments. 
On the basis of scaling assumptions, the critical behaviour of the segment distribution is 
studied. Critical exponents are introduced and expressed in terms of D and D'. The 
general theory is applied to link distribution in the backbone of an infinite percolation 
cluster. Critical exponents for link distribution are also introduced and evaluated explicitly. 

The concept of self-similarity is widely used in the physical sciences. Various types 
of random structures in nature are self-similar and described as fractals (Mandelbrot 
1977, 1982). There frequently exist typical segments dominating the physical properties 
of self-similar patterns. Therefore, the understanding of segment distribution is sig- 
nificant in the physics of self-similar systems. Recently, Sawada et al(1982) discussed 
the distribution of one-dimensional branches in a random pattern. In this letter, we 
extend their treatment to general segment distribution in self-similar patterns. The 
critical behaviour associated with segment distribution is investigated on the basis of 
scaling assumptions, which is the first purpose of this letter. In percolation theory, 
study of the backbone structure of an infinite cluster has received considerable attention 
in connection with many physical properties of random systems such as conductivity 
of random resistor networks and magnetic order in dilute ferromagnets (Skal and 
Shklovskii 1974, de Gennes 1976, Stanley 1977, Kirkpatrick 1978, Coniglio 1982). Thus, 
a second purpose of this letter is to apply the general theory to link distribution in the 
cluster backbone and to clarify the geometrical picture of the backbone. 

We consider a self-similar pattern with a fractal (HausdorfT) dimensionality D 
which consists of segments with a fractal dimensionality D' less than D. By definition 
of the fractal (Hausdorfl) dimension (Mandelbrot 1977), the minimum number N (  7) 
of balls with a radius 7 which are necessary to cover the whole pattern is proportional 
to r ] - D :  

Similarly, the number q(q) of balls necessary to cover a segment of length 1 is given 
by 

nd17) a (11 TID' .  (2) 
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On the other hand, N ( 7 )  and n f ( 7 )  satisfy the relation (Sawada er a1 1982) 

N(7) = ITm n r ( a l f ( 0  d1, (3) 

where f( 1) is a distribution function of segments of length 1. From (1 H3), we find 

f(/) a F' + D ) ,  (4) 

The discussion is extended to a quasi-self-similar pattern, i.e. a pattern which 
consists of unit components of length unity and is self-similar only in the length scale 
1 << Ld 6. We call a segment composed of s unit components an s-unit segment and 
define a distribution function p(s, 6) of s-unit segments by 

number of s-unit segments 
'(" ') number of units belonging to the whole pattern' 

In the length scale 1 << LS 6, the length 1, of an s-unit segment is expressed as 

\:'as 

and p(s, 5 )  is related to f(Z,) as 

P(S,  5) ds  =f(k) dl,. 

P ( S ,  O K  s-(l 

Substitution of (4) and (6) into (7) leads to 

(1 << s d 6"'). + D / D ' )  

On the basis of scaling assumptions, we investigate critical behaviour about segment 
distribution. Here p(s, 6 )  is assumed to have the scaling form (Stauffer 1979) 

p(s, 5) = S - + F ( S / S o ,  (9) 

sg a $/'. (10) 

where se is a typical segment size dominating all critical phenomena and defined by 

Comparing (9) and (IO) with (6) and (8), we have 

s = l /D' ,  

T =  1 +D/D'. 
We introduce critical exponents describing the segment distribution defined by 

[; s d s ,  5 )  e-hs] sing a (16) 

where Z, denotes the sum over all segments and the subscript 'sing' means the singular 
part, namely, the leading non-analytic part of the subscripted quantity. Substitution 
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of (9H12) into (13H16) gives (for details, see Stauffer 1979) 

[ ; skp(s,  5)Isiiga e r - ~ - k ) / b  - - 5  D - ~ D ’  9 

a h r-2 = h D/ D‘- I 

sing 

Then we find 

cr^ = D, ~ = D - D ’ ,  (1 9)Y (20) 

+ = 2 D ’ -  0, S = D’/(D - D’). (2 11, (22) 

We now specialise to the backbone of the infinite cluster in percolation lattices. 
Here the backbone is regarded as composed of one-dimensionally connected links 
defined as follows. In the length scale less than coherence length 5, the backbone 
consists of singly connected channels and multiply connected blobs (Stanley 1977, 
Coniglio 1982). (Coniglio called this singly connected part ‘links’. This definition of 
links is different from ours presented here.) If two properly chosen bonds in channels 
are cut, an isolated cluster is separated from the backbone. We call the component 
separable from the other part by cutting only two bonds as a biconnected cluster. 
Under the condition that each cluster is formed as large as possible, we can divide the 
backbone into biconnected clusters uniquely. In each biconnected cluster, an s-site 
(-bond) link is defined by the largest one-dimensionally connected chain containing s 
sites (bonds). In the remaining part of the cluster, an s’-site link is similarly defined 
by the largest chain. Iterating this procedure until all sites in the backbone are assigned 
to links, we can define link distribution uniquely. 

In this case, a distribution function pL(s, p) of s-site links is defined by 

number of s-site links 
E number of sites belonging to the backbone’ PL(s’ 

where p is a percolation probability. Associated critical exponents are given by 

(29) 

where p c  is the percolation threshold and Y is the critical exponent for the coherence 
length 5 defined by s a ( p  -pc)-”.  In the length scale 1 << Lc 5, the cluster backbone 
is self-similar and has a fractal dimensionality dB = d - P B / v  (Kirkpatrick 1978). On 
the other hand, one-dimensionally connected links are considered to make self-avoiding 

a h ’ I 6 L ,  
sing 
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walks (Stanley 1977). Then the fractal dimensionality dL of links is given by 

dL = ViAW,  (30) 

where vSAW is the exponent for self-avoiding walks defined by the mean-square 
end-to-end distance (R') and the number of steps N as ( R 2 ) X  N Z U s ~ w .  On the basis 
of the general theory, we can express all critical exponents in terms of d B  and dL: 

Explicit values of critical exponents evaluated from known estimates for v and PB are 
listed in table 1. For vSAW, we adopt the Flory formula (Flory 1953), vSAW = 3 / ( d  +2) 
( d  S 4) and 0.5 ( d  3 4). 

Table 1. Critical exponents for link distribution. 

d va P i  4 A W  a L  PL YL SL U L  7L 

1 I 0 1 I 0 1 CO 1 2 
2 1.35 0.5 0.75 -0.2 0.4 1.4 4.5 0.6 2.2 
3 0.84 0.9 0.6 0.4 0.2 1.2 6.4 0.7 2.2 
4 0.7 1.1 0.5 0.3 0.3 1 . 1  4.7 0.7 2.2 
5 0.6 0.5 
6 0.5 2' 0.5 I 0 I a) 1 2 

%tauffer (1979). 
bKirkpatrick (1978). 
'Stanley (1977). 
dFlory (1953). 

Recently, Ohtsuki and Keyes (1984a) have introduced and calculated the fractal 
dimensionality d t  for the backbone length from a dynamical point of view. The 
fractal dimensionality d L  represents the length along the one-dimensionally connected 
links in the backbone, whereas df shows the effective length along the whole backbone. 
Hence the relation between d ,  and d f  is not trivial. However, explicit estimates of 
d f  suggest that d f  is nearly equal to dL (Ohtsuki and Keyes 1984a). If d L =  d f ,  we 
can get the expression of the dynamical exponent I*. for the conductiviti in terms of 
the static exponents v, Be and vSAW: 

I*. = 2v( V i A W -  1) + P B .  (37) 

Equations (1 l), (1 2) and (19H22) hold generally in self-similar systems. The random 
pattern discussed by Sawada et al (1982) is one example with D'= 1. In percolation 
lattices, critical exponents for finite cluster distribution in the whole lattices and dead 
end distribution in the infinite cluster are all described by them (Stauffer 1979, Ohtsuki 
and Keyes 1984b). The infinite cluster has a hierarchical structure, i.e. the cluster 
consists of dead ends and dead ends are composed of links. The present arguments 
are also applicable to such systems, e.g. link distribution in the whole infinite cluster 
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including dead ends. Consider a hierarchical pattern where segments consist of 
subsegments with a fractal dimensionality D” less than D’. Let p’(t, 5) be a distribution 
function of t-unit subsegments defined by 

(38) 
number of t-unit subsegments in the whole pattern 

number of units belonging to the whole pattern 
‘ P‘(t’ 

By definition, we get 

where n( t ,  s) is the number of t-unit subsegments in an s-unit segment. Self-similarity 
of segments leads to 

where ls is the length of an s-unit segment given by (6) and r, is that of a t-unit 
subsegment related to t as ryat. Substituting (8) and (40) into (39), we have a 
consistent result 

(1 << t G 5””). (41) 

A geometrical (fractal) interpretation of thermal critical phenomena was presented 
by Suzuki (1983). He showed that d - /3/ v can be regarded as a fractal dimensionality 
of the resultant dominant cluster which corresponds to typical segment size in our 
discussions. The present work supports this interpretation and makes geometrical 
meanings clearer. In addition, the distribution of clusters (droplets) near critical points 
turns out to be described by (4) and (8). Suzuki (1974) also proposed weak universality, 
that is, universality for the critical exponents &, and 9 defined through the correlation 
length 5. It becomes evident that weak universality means universality for the fractal 
dimensionality of clusters (droplets) dominating critical behaviour. We consider that 
from a geometrical point of view, critical (non-analytic) behaviour of physical quantities 
generally comes from the fractal nature of systems. 

- ( I  + D / D ” )  
P ’ ( 4  5 > a  t 
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